Goût, odorat et Nutrition

Ph. Rombaux, MD, PhD
Institute of Neurosciences
Dept ORL
University of Louvain
Brussels, Belgium

Chemosensory perception

- Olfaction orthonasal
- Olfaction retronasal
- Gustatory perception
- Tactile, sensory, ...

Multisensory perception involving cranial nerve I, V2, IX, X, VIIb

Hunger - Satiety

- Digestive tube and hormones
 Negative feedback with peptide secretion
 Cholecystokinine (CCK)
- Glucose and Insulin blood level
- Hypothalamus: lateral and ventromedian
- Connections to chemosensory centers to amygdala to prefrontal cortex

cognitive factors:

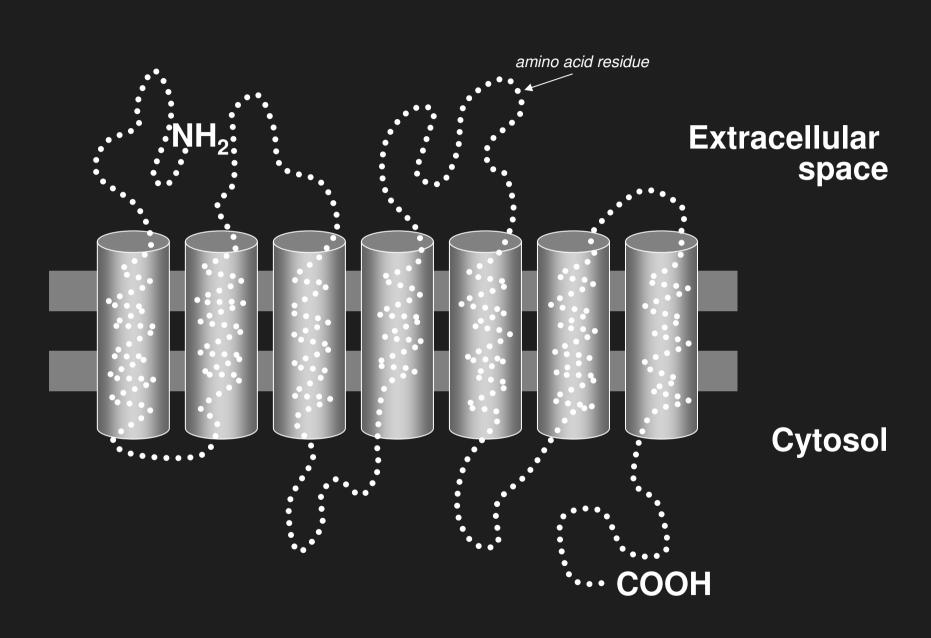
food preference and aversive gustatory comportment

Nutritional implications

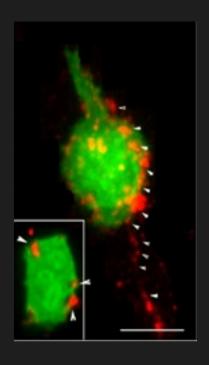
- Olfaction is viewed as instrumental in locating foods in the environnment
- Taste is regarde as the final gatekeeper for ingestive decisions

sweetness: carbohydrates

saltiness: ions and electrolytes


umami: protein

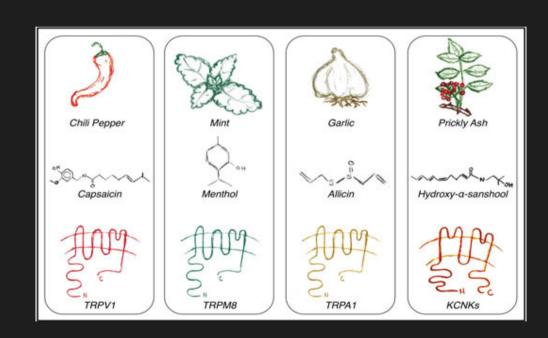
sourness: acids


bitterness: toxic or harmful agents

Nutritional implications

- Sensory function and food selection
 - provision of adequate nutrition without oronasal chemosensory stimulation (e.g. total parental nutrition) commonly does not result in complete satiety.
 - use of high-intensity sweeteners and fat replacement have not led to reduced consumption of sugar, fat or total energy.

Protein G à 7 domaines transmmb



SCrC in green
Substance P in nerve ending in red

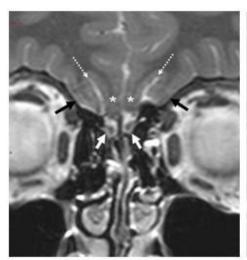
Solitary chemoreceptor cells
Oral and nasal mucosa
Respons to vapor-phase irritant chemicals

Stimulation of nasal trigeminal chemoreceptors

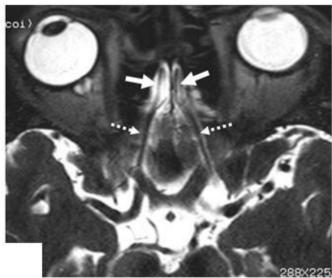
- Pungent sensation
- tingling
- stinging
- burning
- cooling
- warming
- painful
- irritating

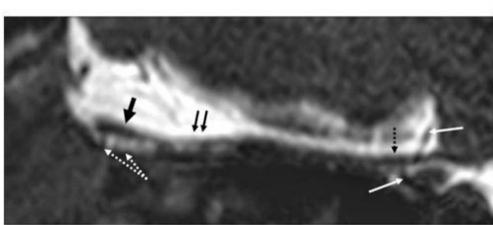
Assessement of sensory function

Psychophysical testing

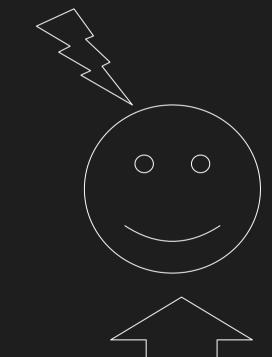

Assessement of chemosensory function


Psychophysical testing Orthonasal - Retronasal

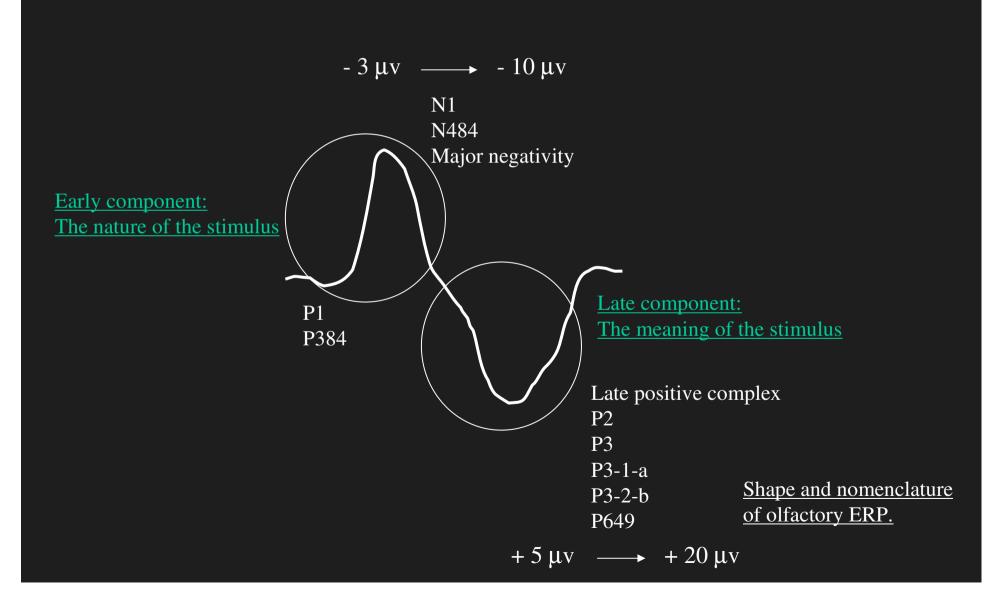

MRI Olfactory Bulb volume

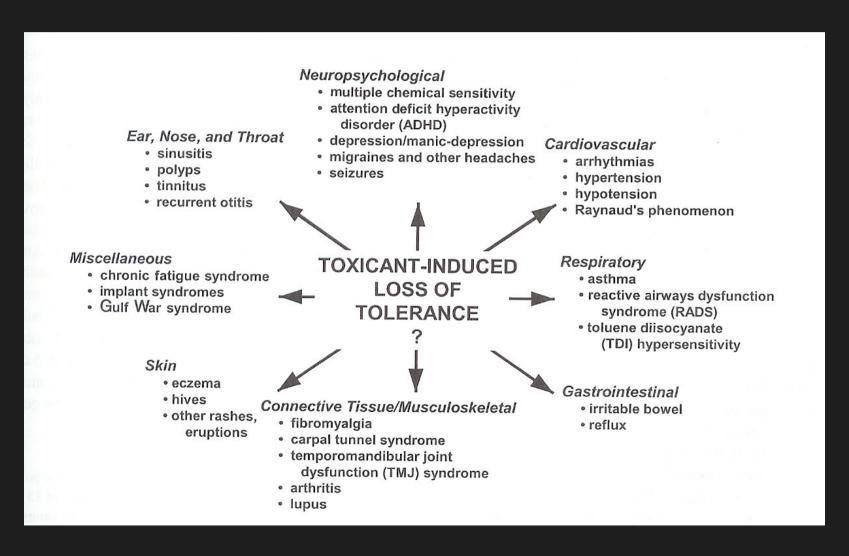

Chemosensory
Event Related Potentials

MRI Olfactory Bulb volume



Chemosensory Event Related Potentials


Recording



ChemoSensory Event Related Potentials

Psychophysical orthonasal testing	Olfactory ERPs	Conclusion
Normosmia	Present	Normal olfactory function
Normosmia	Absent	Possibly normal olfactory function, consider the possibility of a technical problem (EEG artefacts,).
Hyposmia	Present	Decreased olfactory function. (the presence of OERPs may be correlated with a good prognosis)
Hyposmia	Absent	Decreased olfactory function. (the absence of OERPs may be correlated with a bad prognosis)
Anosmia	Present	Consider patient malingering
Anosmia	Absent	Severely altered olfactory function, bad prognosis.

Multiple Chemical Intolerance

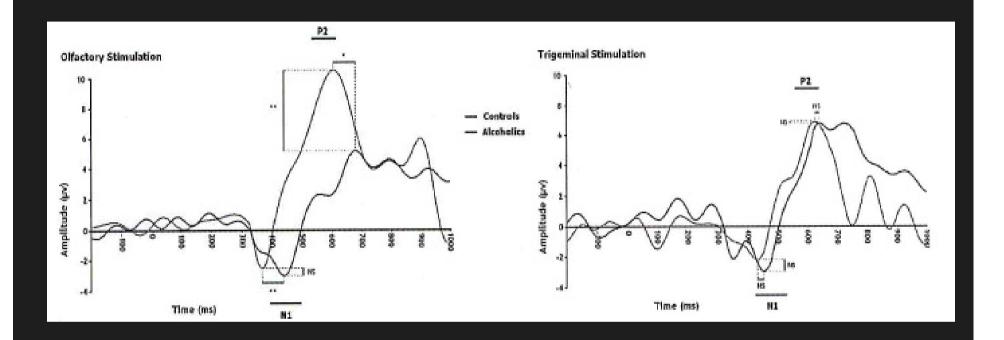
Chemosensory event-related potentials in alcoholism: A specific impairment for olfactory function

Pierre Maurage a,*, Christophe Callot a, Pierre Philippot b, Philippe Rombaux c, 1, Philippe de Timary b, d, 1

^{*} Neuroscience, Systems and Cognition (NEUROCS) and Health and Psychological Development (CSDP) Research Units, Institute of Psychology, Catholic University of Louvain, 10, Place C. Mercier, 1348 Louvain-la-Neuve, Belgium

b Health and Psychological Development (CSDP) Research Unit, Institute of Psychology, Catholic University of Louvain, 10, Place C. Mercier, 1348 Louvain-la-Neuve, Belgium

Department of Otorhinolaryngology, St Luc Hospital and Institute of Neuroscience, Catholic University of Louvain, 10, Avenue Hippocrate, 1200 Brussels, Belgium


d Department of Psychiatry, St Luc Hospital and Institute of Neuroscience, Catholic University of Louvain, 10, Avenue Hippocrate, 1200 Brussels, Belgium

Alcoholic and controls individuals' results for behavioural olfactory measures: mean (S.D.)..

Group	Orthonasal testing	Retronasal testing (% correct)			
	OT ^a /NS	ODp\N2	OI **</th <th>TDId)**</th> <th></th>	TDId)**	
Controls (N=10)	5.65(0.63)	12.3 (1.76)	12.3 (0.94)	30.5 (1.93)	72.3 (10.21)
Alcoholics (N=10)	5.55(1.04)	12.4 (2.27)	10.4 (1.71)	27.25 (2.91)	60,66 (13.5)

NS, non-significant.

- * Odor threshold score (0-16).
- b Odor discrimination score (0-16).
- Odor identification score (0–16).
 Threshold-discrimination-identification global score (0–48).
- * p<.05.
- " p < .01.

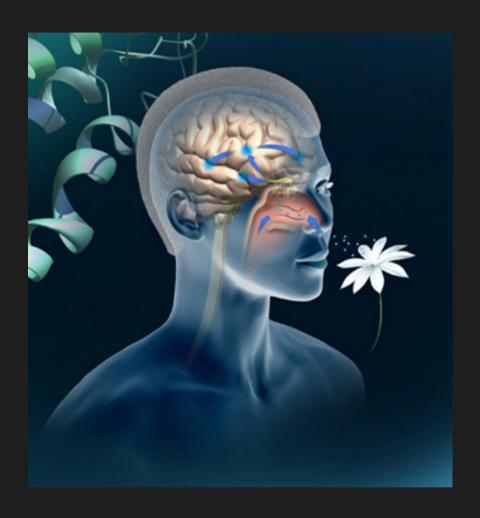
Fame 3

Electrophysiological results: mean latencies [ms (S.D.)] and amplitudes [µν (S.D.)] for each electrode (Fz, Cz, Pt) and each stimulus type (olfactory, trigeminal) for N1 and P2 components, among control and alcoholic groups.

		N1					P2						
		Olfactory		Trigeminal		Olfactory		Trigeminal					
1		Fz	Cz	Pz	Fz	Cz	Pz	Fz	Cz	Pz	Fz	Cz	Pz
Controls (N=10)	Latency Amplitude	374 (48.2) -2.55 (3.16)	372 (48.8) -2.28 (2.55)	372 (37.5) -2.21 (2.16)	440 (49.4) -1.98 (2.79)	448 (46.5) -2.63 (2.42)	444 (53.9) -2.29 (1.21)	545 (64.1) 13.64 (6.16)	577 (62.8) 11.8 (4.23)	558 (78.7) 5.97 (3.47)	627 (79.4) 9.83 (5.22)	622 (65.5) 7.35 (2.94)	621 (66.8) 3.91 (2.01)
Alcoholics (N=10)	Latency Amplitude	454 (68.1) -4.56 (3.32)	455 (69.5) -4.21 (2)	464 (64.1) -2.05 (1.33)	458 (87.2) -3.08 (3.01)	465 (78.5) -2.93 (2.19)	464 (87.1) -3.32 (2.62)	662 (84.3) 6.03 (3.05)	659 (83.4) 5.6 (1.58)	658 (81.2) 3.45 (2.02)	649 (87.9) 9.57 (8.41)	655 (88.6) 7.9 (4.31)	637 (79.4) 3.44 (3.41)

Olfactory Impairment Is Correlated with Confabulation in Alcoholism: Towards a Multimodal Testing of Orbitofrontal Cortex

Pierre Maurage^{1*}, Christophe Callot¹, Betty Chang², Pierre Philippot², Philippe Rombaux^{3,3}, Philippe de Timary^{2,4,5}


1 Neuroscience, Systems and Cognition (NEUROCS) and Health and Psychological Development (CSDP) Research Units, Institute of Psychology, Catholic University of Louvain, Louvain, Louvain-la-Neuve, Belgium, 2 Health and Psychological Development (CSDP) Research Unit, Institute of Psychology, Catholic University of Louvain, Louvain-la-Neuve, Belgium, 3 Department of Otorhinolaryngology, St Luc Hospital and Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium, 4 Department of Psychiatry, St Luc Hospital and Institute of Neuroscience, Catholic University of Louvain, Brussels, Belgium

,	Controls (N = 20)	Alcoholics (N = 20)
Olfaction		
Odor Threshold score (0-16) NS	5.82 (0.67)	5.65 (0.97)
Odor Discrimination score (0-16) *	13 (1.68)	11.8 (1.96)
Odor Identification score (0-16) ***	12.75 (0.91)	10.85 (1.89)
TDI Global score (0-48) ***	31.5 (2.05)	28.25 (3.46)
Retronasal Testing (% correct) ***	72.1 (9.77)	56.1 (12.18)
Executive functions	THE REPORT OF THE PARTY OF	
Stop Signal Task		
Performance Block 1 (% correct) NS	95.89 (3.39)	93.78 (5.97)
Reaction Times Block 1 (ms) **	606 (71.8)	717 (164.4)
Performance Block 2 (% correct) NS	91.41 (6.97)	83.65 (16.21)
Reaction Times Block 2 (ms) *	705 (89.12)	798 (150.7)
Stop Signal Index NS (% resp. to stop trials)	27.9 (18.62)	32.7 (22.17)
Confabulation Task		
Number of Hits Block 1 NS	39 (0.85)	38.55 (1.84)
Number of False Positive Block 1 NS	3.15 (2.74)	2.55 (2.26)
Reaction Times Block 1 (ms) **	786 (122.8)	1008 (285.3)
Number of Hits Block 2 NS	36.37 (2.49)	37.05 (2.61)
Number of False Positive Block 2 *	3.89 (2.64)	7.85 (7.17)
Reaction Times Block 2 (ms) *	774 (118.9)	932 (282.1)
Temporal Context Confusion Index **	0.032 (0.071)	0.145 (0.167)

NS = non-significant; *p<0.05; **p<0.01; ***p<0.001 doi:10.1371/journal.pone.0023190.t002

		Odor Threshold	Odor Discrimination	Odor Identification	TDI Global Score	Retronasal Testing
SSI ¹	Controls	-0.35 (N.S.)	-0.02 (N.S.)	0.14 (N.S.)	0.04 (N.S.)	0.11 (N.S.)
	Alcoholics	-0.15 (N.S.)	-0.33 (N.S.)	-0.02 (N.S.)	-0.13 (N.S.)	-0.22 (N.S.)
TCC ²	Controls	0.13 (N.S.)	-0.27(N,S,)	-0.57 (p<0.01)	-0.52 (p<0.05)	-0.35 (p<0.05)
	Alcoholics	-0.12 (N.S.)	-0.19 (N.S.)	-0.62 (p<0.001)	-0.48 (p<0.05)	-0.32 (p<0.05)

¹SSI = Stop Signal Index (percentage of categorization response to stop trials).
²TCC = Temporal Context Confusion Index (FP2/Hits2) - (FP1/Hits1).
doi:10.1371/journal.pone.0023190.t003

http://www.orl-nko.be/common/b-ent_guidelines.htm philippe.rombaux@uclouvain.be