Relevance and effect of tongue strengthening exercises

Gwen Van Nuffelen, Leen Van den Steen, Cindy Guns, Els Verhaeghe, Anke Aerts, Olivier

Vanderveken, Diane Van Rompaey, Marc De Bodt

Jan Vanderwegen, Johan Allouche - CHU Saint-Pierre

Kennis / Ervaring / Zorg

Intensive tongue strengthening exercises

- Function and importance of tongue strength
- Intensive TSE: what?
- TSE and the other main principles of strength training (specificity & transference)
- Effect of TSE
- How to do it?

Importance of TS

Kennis / Ervaring / Zorg

Importance of TS

Bolus containment

TS is considered to be the main driving force for bolus propulsion

Transfer food and liquids from mouth to throat and oesophagus

Steele 2012; Sura et al. 2012 Ono T et al 2007, Butler SG et al 2011,

Importance of TS

Insufficient TS pressures are related to

•pharyngeal (vallecular) residue

•high risk for (silent) aspiration

aspiration pneumonia

•endangers adequate oral nutrition (insufficient intake, prolonged meal duration)

Lazarus 2009, 2007, 2000, Rademaker et al, 1994*, Ku et al. 2007, Smith et al. 2000, Pauloski et al 2009, Molfenter, 2013

Tongue strengthening exercises

•(Partially) based upon priciples of exercise / strength training

•Current knowledge on how to obtain maximum benefit is derived from physical rehabilitation, exercise science and sports training

Principles of strength training

Principles of strength training

Tendency to

-implement these principles of exercise in swallowing rehabilitation methods

-find out to which degree current methods meet these principles

-McNeill Dysphagia Therapy Program

-Expiratory / inspiratory Muscle Strength Training

-Tongue Strength Exercises

-....

Principles of strength training

Strength-Training Exercise in Dysphagia Rehabilitation: Principles, Procedures, and Directions for Future Research

Lori M. Burkhead, PhD,^{1,3,} Christine M. Sapienza, PhD,^{2,3} and John C. Rosenbek, PhD^{1,3}

Dysphagia 22:251–265 (2007) DOI: 10.1007/s00455-006-9074-z

Dysphagia © Springer Science+Business Media, LLC 2007

Resistive loading

Principle of overload

-exercises that do not force the neuromuscular system beyond the level of usual activity will not elicit adaptations

Progressive resistance:
 increase force-generating
 capacity → increase load

Resistive loading

progressive resitance: rules based on large muscle groups

- -load is a proportion of maximal force-generating capacity
- -i.e. a percentage of the 1-Repetion Maximum (1RM)
- -starting point: 60%
- -higher starting level \rightarrow better/ faster outcome?

-needs investigation but some suggest that this may lead to overuse injuries

volume of practice

repetitions in one sequence

total sets completed

rest between sets

days /week

number of weeks

Volume of practice

- Currently no knowledge on the 'ideal' volume of practice for oropharyngeal muscles
- No dose-dependent studies
- But: outcome studies indicate strength training requires:
 - multiple repetitions/session
 - multiple days/week
 - multiple weeks

Study	Weeks	Sessions	Duration/trials
Lazarus et al. 2003	4		
Clark et al. 2009	9		
Robbins et al. 2005	8	3x/week	3x 30 trials/day
Robbins et al. 2007	8	3x/week	3x 30 trials/day
Yeates et al. 2008		2-3x/week	40 minutes
Steele et al. 2013		24	60 trials
Van Nuffelen et al. 2012 DRS	4	5x/week	15 Ant -15 Post MIP 12 Ant – 12 Post Endurance
Van Nuffelen et al. 2013 DRS	4 - 8	3-5x/week	15 Ant -15 Post MIP 12 Ant – 12 Post Endurance

Specificity and transference

Kennis / Ervaring / Zorg

Specificity

If you want to become a good swimmer, swim If you want to become a good runner, run If you want to be become good in swallowing, swallow

•Simply improving endurance or strength of a specific muscle group, is not necessarily enough for improved performance of a specific task

- •McNeill Dysphagia Therapy Program (Crary & Mann)
- •Tongue strengthening exercises?

Transference

BUT! we also know from physical rehabilitation that

•isolated strength-training regimes that incorporate progressive resistance have been shown to transfer to improved performance in functional activities

•in conjunction with or as precursor

•in frail or decompensated individuals with significant weakness

ightarrow Can explain how exercises that are not swallowing-specific may improve swallowing function

E.g. tongue strengthening exercises, EMST, LSVT, ...

Specificity & transference: tongue muscles

'tongue muscle' differs from most other skeletal muscles (muscle hydrostat)

•composed almost entirely of muscle

 any one movement goal may be accomplished by a variety of muscle activation patterns

•any muscle fiber may be recruited for a number of movement goals

 \rightarrow specificity?

Specificity & transference: tongue muscles

Study	Specificity	Results
Lazarus et al. 2003	Yes	high resistance TSEincreased tongue strengthno impact on endurance
Clark et al. 2009	No	 direction of TSE (protrusion, elevation, lateralization) exercises for a specific direction result also in an improvement of strength in the other directions no significant differences between methods!
Clark 2012	(Yes)	exercises for strength, endurance, power •significant differences in effect size

Specificity & transference:tongue muscles

And remember:

Indications that TSE can improve *functional swallowing*

-improvement of PAS (Robbins et al. 2005/2007; Steele et al. 2013)

-reduction of pharyngeal residue (Robbins et al. 2005/2007)

- however: Steele et al. 2013: no improvement, even worsening

Effect of Tongue Strengthening Exercises

Kennis / Ervaring / Zorg

Effect of TSE

Accumulating evidence that TSE can improve *Maximal Isometric Tongue Pressures* (MIP) in different populations

Study	Participants	Ν
Lazarus et al. 2003	Healthy adults	31
Clark et al. 2009	Healthy adults	39
Robbins et al. 2005	Healthy elderly	10
Robbins et al. 2007	Stroke	10
Yeates et al. 2008	Stroke & brain injury	3
Steele et al. 2013	Brain injury	6
Van Nuffelen et al. 2012	HNC – CRT	6
Van Nuffelen et al. 2013	Neurodegenerative diseases	9

Effect of TSE

Indications that TSE can improve *functional swallowing*

-improvement of PAS (Robbins et al. 2005/2007; Steele et al. 2013)

-reduction of pharyngeal residue (Robbins et al. 2005/2007)

 however: Steele et al. 2013: no improvement, even worsening

Tongue Strengthening Exercises Indications that TSE can

•change muscle structure and contraction capacity

- •increase tongue volume
- •result in cortical plasticity

•Swal-QoL

Robbins et al. 2005/2007, Steele et al. 2013, Svensson et al. 2006, Anima et al. 2011, Kletzien et al. 2012, Connor et al. 2009

Which patient could benefit from TSE?

UZA'

Kennis / Ervaring / Zorg

Pathofysiology

Main indication: residue base of tongue & valleculae

Other possible indications (compensation): -hypopharyngeal residue -reduced opening of the UES -elongated oropharyngeal transport

Pathology

	4	
Study	Participants	Ν
Lazarus et al. 2003	Healthy adults	31
Clark et al. 2009	Healthy adults	39
Robbins et al. 2005	Healthy elderly	10
Robbins et al. 2007	Stroke	10
Yeates et al. 2008	Stroke & brain injury	3
Steele et al. 2013	Brain injury	6
Van Nuffelen et al. 2012	HNC – CRT	6
Van Nuffelen et al. 2013	Neurodegenerative diseases	9

Normative data

Dysphagia DOI 10.1007/s00455-012-9425-x

ORIGINAL ARTICLE

The Influence of Age, Sex, Bulb Position, Visual Feedback, and the Order of Testing on Maximum Anterior and Posterior Tongue Strength and Endurance in Healthy Belgian Adults

Jan Vanderwegen · Cindy Guns · Gwen Van Nuffelen · Rik Elen · Marc De Bodt

Q	parameter	answer	implications
1	age*gender	no	separate study is possible
2	age	yes	older = weaker and shorter
3	gender	yes	males = stronger and longer
4	bulb position	yes	anterior tongue = stronger and longer
5	visual feedback	yes	with feedback = stronger

How to do 'modern' TSE?

Kennis / Ervaring / Zorg

Iowa Oral Performance Instrument

Study	Participants	Ν	Method
Lazarus et al. 2003	Healthy adults	31	IOPI – tongue depressor
Clark et al. 2009	Healthy adults	39	tongue depressor
Robbins et al. 2005	Healthy elderly	10	IOPI
Robbins et al. 2007	Stroke	10	IOPI
Yeates et al. 2008	Stroke & brain injury	3	IOPI
Steele et al. 2013	Brain injury	6	IOPI
Van Nuffelen et al. 2012	HNC – CRT	6	IOPI
Van Nuffelen et al. 2013	Neurodegenerative diseases	9	IOPI

IOPI

?

Study	Participants	Ν	Method
Lazarus et al. 2003	Healthy adults	31	IOPI – tongue depressor
Clark et al. 2009	Healthy adults	39	tongue depressor
Robbins et al. 2005	Healthy elderly	10	IOPI
Robbins et al. 2007	Stroke	10	IOPI
Yeates et al. 2008	Stroke & brain injury	3	IOPI
Steele et al. 2013	Brain injury	6	IOPI
Van Nuffelen et al. 2012	HNC – CRT	6	IOPI
Van Nuffelen et al. 2013	Neurodegenerative diseases	9	IOPI

IOPI

IOPI allows for:

determination of 1 RM
practicing at a given % of the patient's 1 RM
more professional

! tongue depressor not suitable to judge TS (Clark 2003)

MADISON ORAL STRENGTHENING THERAPEUTIC [(MOST[®]) DEVICE (Robbins et al)

Kay Pentax Digital Swallowing Station

Looking at different exercise schemes

Kennis / Ervaring / Zorg

Robbins et al. 2005 & 2007

- 3x 30 trial /day 3x/week 8 weeks
- based on 1 RM

Time	New 1 RM	Level of practice
Baseline – week 1	Х	60 % RM
Week 2		80% RM
Week 3	Х	80% RM
Week 4		80% RM
Week 5	Х	80% RM
Week 6		80% RM
Week 7	Х	80% RM
Week 8		80% RM

CHU-St-Pierre - 1

- MIP ant 1X
- MIP post 1X
- End ant 1X
- End Post 1X
- 30 repetitions of 75% MIP (1 pression/sec); ant & post
- 75% MIP:
 - $-1 \sec \rightarrow 2 \sec \rightarrow 3 \sec \rightarrow 4 \sec \rightarrow ... \rightarrow max.$
 - $\max \rightarrow ... \rightarrow 4 \sec \rightarrow 3 \sec \rightarrow 2 \sec \rightarrow 1 \sec$

Johan Allouche, Jan Vanderwegen

Take home messages

Tongue strength matters

Intensity matters (overload & volume)

'The' protocol? No

Try and fail but don't fail to try...